Chemical Kinetics

Reaction Rates

Rate = $\frac{\Delta[A]}{\Delta t}$ \rightarrow Slope of tangent line of concentration vs. time graph E.g. 2NO₂(g) \rightarrow 2NO(g) + O₂(g)

$$-\frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[NO]}{\Delta t} = 2\left(\frac{\Delta[O_2]}{\Delta t}\right)$$

Rate Laws-Introduction

Differential Rate Law-rate depends on concentration

Rate = $k[NO_2]^n \rightarrow k \& n$ found experimentally

→ rate law under conditions that only forward reaction takes place at a reasonable rate

Integrated Rate Law-describes how concentrations depend on time

Determining the Form of the Rate Law

Method of Initial Rates

E.g.
$$NH_4^+$$
 (aq) + $NO_2^- \rightarrow N_2(g) + 2 H_2O(1) \rightarrow$ see Table 12.4 on page 569 for data
Rate = $-\frac{\Delta[NH_4^+]}{\Delta t} = k[NH_4^+]^n[NO_2^-]^m \rightarrow$ from data in Table 12.4, n = 1, m = 1,
and k = 2.7 x 10⁻⁴ L/mol•s
Rate = (2.7 x 10⁻⁴ L/mol•s)[NH_4^+][NO_2^-]

The Integrated Rate Law

E.g. $aA \rightarrow products$ where kinetics is first order

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

 $\frac{d[A]}{dt} = k[A] \rightarrow \text{Calculus derivation}$
 $\frac{d[A]}{dt} = kdt$
 $\int_{A_o}^{A} \frac{d[A]}{[A]} = -\int_{0}^{t} kdt$
 $\ln[A]|_{A_o}^{A} = -kt|_{0}^{t}$
 $\ln[A] - \ln[A_o] = -k(t - 0)$
 $\boxed{\ln[A] - \ln[A_o]} = -k(t - 0)$

raph of ln[A] vs. t should produce a straight line with a slope of -k & a y-intercept of $ln[A_o]$ where kintics are <u>FIRST</u> order.